Mask R-CNN with New Data Augmentation Features for Smart Detection of Retail Products
نویسندگان
چکیده
Human–computer interactions (HCIs) use computer technology to manage the interfaces between users and computers. Object detection systems that convolutional neural networks (CNNs) have been repeatedly improved. Computer vision is also widely applied multiple specialties. However, self-checkouts operating with a faster region-based network (faster R-CNN) image system still feature overlapping cannot distinguish color of objects, so inhibited. This study uses mask R-CNN data augmentation (DA) discrete wavelet transform (DWT) in lieu prevent trivial details images from hindering extraction for deep learning (DL). The experiment results show proposed algorithm allows more accurate efficient similarly colored objects than ResNet 101, but excellent resolution real-time processing smart retail stores.
منابع مشابه
Deep CNN Ensemble with Data Augmentation for Object Detection
We report on the methods used in our recent DeepEnsembleCoco submission to the PASCAL VOC 2012 challenge, which achieves state-of-theart performance on the object detection task. Our method is a variant of the R-CNN model proposed by Girshick et al. [4] with two key improvements to training and evaluation. First, our method constructs an ensemble of deep CNN models with different architectures ...
متن کاملME R-CNN: Multi-Expert R-CNN for Object Detection
Recent CNN-based object detection methods have drastically improved their performances but still use a single classifier as opposed to ”multiple experts” in categorizing objects. The main motivation of introducing multi-experts is twofold: i) to allow different experts to specialize in different fundamental object shape priors and ii) to better capture the appearance variations caused by differ...
متن کاملPedestrian Detection with R-CNN
In this paper we evaluate the effectiveness of using a Region-based Convolutional Neural Network approach to the problem of pedestrian detection. Our dataset is composed of manually annotated video sequences from the ETH vision lab. Using selective search as our proposal method, we evaluate the performance of several neural network architectures as well as a baseline logistic regression unit. W...
متن کاملCNN-SVM for Microvascular Morphological Type Recognition with Data Augmentation
This paper focuses on the problem of feature extraction and the classification of microvascular morphological types to aid esophageal cancer detection. We present a patch-based system with a hybrid SVM model with data augmentation for intraepithelial papillary capillary loop recognition. A greedy patch-generating algorithm and a specialized CNN named NBI-Net are designed to extract hierarchical...
متن کاملProstate segmentation and lesions classification in CT images using Mask R-CNN
Purpose: Non-cancerous prostate lesions such as prostate calcification, prostate enlargement, and prostate inflammation cause too many problems for men’s health. This research proposes a novel approach, a combination of image processing techniques and deep learning methods for classification and segmentation of the prostate in CT-scan images by considering the experienced physicians’ reports. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app12062902